
Notes on Recurrent Problems – Concrete
Mathematics Chapter 1

Dhavan Vaidya

April 29, 2023



1 Tower of Hanoi

1.1 Key points
• We hope to find the following by playing with the problem:

Tn ≤ 2Tn−1 + 1 for n > 0.

• We must move n− 1 disks before being able to move nth disk

∴ Tn ≥ 2Tn−1 + 1 for n > 0.

• By looking at many cases n, we might guess at closed-form:

Tn = 2n − 1, for n ≥ 0. (1)

1.2 Proof of closed-form
Proof. We proceed using induction.

Base Case: n = 0. The equation is simply

n = 0

∴ T0 = 20 − 1

= 0

Inductive Hypothesis: Assume (1) is true for n− 1.

Tn = 2Tn−1 + 1

= 2(2n−1 − 1) + 1

= 2n − 2+ 1

∴ Tn = 2n − 1

By induction, we have shown that the hypothesis holds for n+ 1

The recurrence can be solved using other methods. The one shown in the
chapter (of adding 1 to each side etc) leaves some open questions:

• How do we know to add 1 on each side?

• How do we know to represent Un = Tn−1 + 1?

1



2 Lines in the Plane
Prove that the closed-form for the recurrence is

Ln =
n(n− 1)

2
+ 1, for n ≥ 0. (2)

Proof. We proceed using induction.

Base Case: n = 0.

L0 =
0(0+ 1)

2
+ 1

∴ L0 = 1

Inductive Hypothesis: Assume (2) to be true for n− 1
Inductive Step: From recurrence

Ln = Ln−1 + n

=

(
n(n− 1)

2
+ 1

)
+ n

=
n2

2
−

n

2
+ 1+ n

=
n2

2
+

n

2
+ 1

=
n(n− 1)

2
+ 1

Ln = Ln−1 + n

=
(n− 1)(n− 1+ 1)

2
+ n

=

(
n(n− 1)

2
+ 1

)
+ n

=
n(n− 1)

2
+

2

2
+

2n

2

=
2n+ 2+ n(n− 1)

2

=
2n+ 2+ n2 − n

2

=
n2 + n+ 2

2

∴ Ln =
n(n− 1)

2

Thus, by induction we prove that the hypothesis holds for n+ 1

2



3 The Josephus Problem
We have to tackle even n and odd n separately. We set 2n people in even case
because integers multiplied by 2 always result in even number. Adding 1 to an
even integer always results in odd, hence we set 2n + 1 for the other case. It
might take some effort to see that J(5 · 2m) = 2m+1 + 1.

3.1 Proving the closed form
We want to prove the following for both — odd and even — cases.

J(2m + ℓ) = 2ℓ+ 1 (3)

Proof. We proceed with induction on two separate cases.

Base Case: n = 1.
∴ m = 0, ℓ = 0.

J(2m + ℓ) = 20 + 0

= 1

Inductive Step: Suppose that for all n such that n = 2k + r, we have
J(n) = J(2k + r) = 2r+ 1

1. Suppose m > 0 and n = 2m+r = 2ℓ. That is, n is even. From recurrence:

J(2n) = 2J(n) − 1

∴ J(n) = 2J

(
n

2

)
− 1

∴ J(2m + ℓ) = 2J

(
2m−1 + ℓ

2

)
− 1

Now, assuming the hypothesis to be true for smaller n:

J

(
2m−1 + ℓ

2

)
=

2ℓ

2
+ 1

∴ J(2m + ℓ) = 2

(
2ℓ

2
+ 1

)
− 1

=
4ℓ

2
+ 2− 1

∴ J(2m + ℓ) = 2ℓ+ 1

2. Suppose m > 0 and n = 2m + r = 2ℓ + 1. That is, n is odd. Similar to
the even case,

J(n) = 2J

(
n

2
− 1

)
+ 1

3



Assuming the hypothesis to be true, we get

J(2m−1 +
ℓ

2
− 1) = 2J(2m−1 +

ℓ

2
− 1) + 1

∴ J(n) = 2

(
2ℓ

2
+ 1− 1

)
+ 1

= 2

(
2ℓ

2

)
+ 1

= 2ℓ+ 1

Thus by induction we prove the closed-form for both odd and even cases of n.

3.2 Checking where J(n) = n
2

works

J(n) =
n

2

∴ 2ℓ+ 1 =
2m + ℓ

2

∴ 2m + ℓ = 2(2ℓ+ 1)

∴ 2m = 4ℓ− ℓ+ 2

∴ 2m = 3ℓ+ 2

∴ 3ℓ = 2m − 2

∴ ℓ =
1

3
(2m − 2)

3.3 Generalisation of Josephus Problem
We convert constants in the recurrence into variables:

f(1) = α,
f(2n) = 2f(n) + β, for n ≥ 1;

f(2n+ 1) = 2f(n) + γ, for n ≥ 1.
(4)

Equations in (1.12) of the chapter tells us that f(n) can be written as:

f(n) = A(n)α+ B(n)β+ C(n)γ (5)

3.3.1 Repertoire Method

We find settings for general parameters (in our case α,β, γ) for which we know
the solution. This gives us repertoire of special cases that we can solve. Usually,
we need as many special cases as there are parameters.

A(n) = 2m;
B(n) = 2m − 1− ℓ;
C(n) = ℓ.

(6)

4



Proof. We proceed with repertoire method.

1. Special case α = 1,β = γ = 0.

f(n) = A(n)α+ B(n)β+ C(n)γ

f(1) = A(1) · 1+ B(1) · 0+ C(1) · 0
∴ f(1) = A(1)

∴ A(1) = 1 from recurrence (4).

f(2n) = 2A(n)α+ B(n)β+ C(n)γ

= 2A(n) + 1 · β
= 2A(n)

f(2n+ 1) = 2A(n)α+ B(n)β+ C(n)γ

= 2A(n) · 1+ 0 · 0+ 1 · 0
= 2A(n)

Proof. Let’s show A(n) = 2m. We proceed with proof by induction to
show:

A(2m + ℓ) = 2m (7)

Base Case: n = 1.
∴ m = 0, ℓ = 0.

A(20 + 0) = 1

∴ A(1) = 1

Inductive Step: Assume the hypothesis (7) to be true for smaller n like
we did for recurrence solution in §3.3.1

A(2n) = 2A(n)

∴ A(n) = 2A

(
n

2

)
∴ A(n) = 2A

(
2m−1 + ℓ

2

)

5



Assuming the hypothesis (7) for n− 1

A(2m−1 +
ℓ

2
) = 2m−1

∴ A(n) = 2 · 2m−1

∴ A(n) = 2m

Similarly,

A(2n+ 1) = 2A(n)

∴ A(n) = 2A

(
n

2
− 1

)
∴ A(n) = 2A

(
2m−1 + ℓ

2
− 1

)
= 2 · 2m−1

∴ A(n) = 2m

Thus, we show by induction that A(n) = 2m.

2. Are there any constants (α,β, γ) that give (4)?

Take f(n) = 1. Since f always gives 1, it is called a “constant function”.

f(n) = 1

∴ α = 1

And,
1 = 2 · f(n) + β

∴ 1 = 2 · 1+ β

∴ β = −1

And,
1 = 2 · f(n) + γ

∴ 1 = 2+ γ

∴ γ = −1

Plugging these values of α,β, γ in (5), we get

f(n) = A(n) · 1+ B(n) · (−1) + C(n) · (−1)

= A(n) − B(n) − C(n)

B(n) = A(n) − 1− C(n)

∴ B(n) = 2m − 1− ℓ

6



3. Let’s set f(n) = n

1 = α

And,
2n = 2f(n) + β

∴ 2n = 2n+ β

∴ β = 0

And,
2n+ 1 = 2f(n) + γ

∴ 2n+ 1 = 2n+ γ

∴ γ = 1

Plugging these values of α,β, γ into (5), we get:

f(n) = A(n)α+ B(n)β+ C(n)γ

∴ n = A(n) · 1+ B(n) · 0+ C(n) · 1
∴ n = A(n) + C(n)

With the three cases, we now have

A(n) = 2m

A(n) − B(n) − C(n) = 1

A(n) + C(n) = n

Now,

C(n) = n−A(n)

= n− 2m

∴ C(n) = ℓ

And,
B(n) = A(n) − 1− C(n)

∴ B(n) = 2m − 1− ℓ

Thus we have our hypothesis from (6) proven.

3.3.2 Checking if bit-shift property holds

f((bmbm−1 . . . b1b0)2) = (αβbm−1
βbm−2

. . . βb1
βb0

)2 (8)

Equation (8) is not strictly binary radix. Instead of allowing 0 and 1 values
for β, we are allowing any values. This is because our parameters (α,β, γ) are
general and can take any value.

For n = 100 in Josephus Problem, we have α = 1, β = −1, γ = 1. Also note
that βbm−1

= β1 = 1, βbm−3
= β0 = −1 and so on. The cyclic left bit-shift

propery from earlier holds in the generalised form as well:

100 = (1100100)2

73 = (1001001)2

7


	Tower of Hanoi
	Key points
	Proof of closed-form

	Lines in the Plane
	The Josephus Problem
	Proving the closed form
	Checking where J(n)=n2 works
	Generalisation of Josephus Problem
	Repertoire Method
	Checking if bit-shift property holds



